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Abstract. The surface behavior of the pairing gap previously studied for semi-infinite nuclear matter is
analyzed in the slab geometry. The gap-shape function is calculated in two cases: a) pairing with the Gogny
force in a hard-wall potential and b) pairing with the separable Paris interaction in a Saxon-Woods mean-
field potential. It is shown that the surface features are preserved in the case of slab geometry, being almost
independent of the width of the slab. It is also demonstrated that the surface enhancement is strengthened
as the absolute value of chemical potential |µ| decreases which simulates the approach to the nucleon drip
line.

PACS. 21.30.-x Nuclear forces – 21.60.-n Nuclear structure models and methods – 21.65.+f Nuclear
matter – 26.60.+c Nuclear matter aspects of neutron stars

1 Introduction

Recently, the surface behavior of the pairing gap in
the 1S0-channel in semi-infinite nuclear matter was in-
vestigated independently within two quite different ap-
proaches [1,2]. A rather sophisticated approach was used
in [1] which starts from the microscopic gap equation
for semi-infinite nuclear matter with the separable rep-
resentation [3,4] of the Paris potential [5]. The effective
pairing interaction Vp

eff adopted in the gap equation was
previously found within the Bethe-Goldstone formalism
for semi-infinite nuclear matter without any form of lo-
cal approximation [6]. All the calculations were made for
two values of the chemical potential: µ = −16MeV and
µ = −8MeV. A surface enhancement in the gap ∆ was
found, the effect being more pronounced for µ = −8MeV.

In [2] a more simplified model was used in which nu-
clear matter was embedded in a semi-infinite hard-wall
potential and the pairing problem was considered in the
BCS approximation with the Gogny force. Such a simple
approach makes it possible to solve the problem to a great
deal analytically and to examine the coordinate depen-
dence of the pairing gap, pairing tensor and correlation en-
ergy density in a rather transparent way. A relatively mild
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surface enhancement of all the quantities under consider-
ation was found. As to ∆, it is of the same size as in [1].

In this paper we carried out an analogous analysis for
a slab of nuclear matter within both approaches with the
hope that a direct comparison of results can help to clarify
the general features of the phenomenon under considera-
tion. The slab system is much closer to real atomic nuclei
than the semi-infinite one and many results can be quali-
tatively related to them.

The structure of the article is as follows. In sect. 2 we
extend the model with the Gogny force [2] to the case of a
hard-wall slab potential. Section 3 contains the extension
of the model of [1] with the Paris force to the case of
slab geometry. The results obtained in both models are
discussed in sect. 4.

2 Pairing with the Gogny force in the
hard-wall slab potential

Let us consider a slab of nuclear matter embedded in a
hard-wall potential of thickness 2L along the x-direction
at the center of the slab. We start from expanding the gap
operator in r-space ∆(r, r′) in terms of the wave functions
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ϕk(r) of the hard-wall slab potential,

ϕk(r) =
1
L
θ(L+ x)θ(L− x) sin kx(x− L)eik⊥r⊥ , (1)

where k = {kx,k⊥}, the quantum number kx running over
the discrete set of eigenvalues kn = πn/(2L), n = 1, 2, . . . .
Within the usual BCS approximation the expansion reads

∆(r1, r2) =
∑
k

ϕk(r1)ϕ−k(r2)∆(k), (2)

where the state | −k〉 is time-reversed with respect to the
state |k〉. The gap ∆(k) obeys the BCS equation

∆(p) = −
∑
k

〈p,−p|V | − k,k〉 ∆(k)
2
√
ξ2(k) +∆2(k)

, (3)

where ξ(k) = ε(k)−µ is the single-particle energy relative
to the chemical potential and

〈p,−p|V | − k,k〉 =
∫ ∫

dr1 dr2ϕ
∗
p(r1)ϕ∗

−p(r2)

×V (r1, r2)ϕ−k(r2)ϕk(r1) (4)

are the matrix elements of the pairing interaction
V (r1, r2). For the purpose of performing calculations an-
alytically we used here, as in [2], the Gogny force D1:

V (r1, r2) =
2∑

c=1

(Wc −Bc −Hc +Mc)e−(r1−r2)
2/α2

c (5)

with the values of the parameters given in [7].
Using the explicit form of the eigenfunctions (1) in

eq. (4), one obtains

〈p,−p|V | − k,k〉 = 1
2L2

2∑
c=1

(Wc −Bc −Hc +Mc)

×πα2
ce

−α2
c(p2

⊥−k2
⊥)/4

×
∫ ∫

dx1 dx2θ(x1+L)θ(L−x1)θ(x2+L)θ(L−x2)

× sin
(
kx(x1−L)

)
sin

(
kx(x2−L)

)
sin

(
px(x1−L)

)
× sin

(
px(x2 − L)

)
e−(x1−x2)

2/α2
c . (6)

Upon substituting this expression in eq. (3) and, as the
s-wave pairing is considered, averaging over the angle be-
tween vectors p and k, the gap equation can be rewritten
as follows:

∆(pm, p⊥) =
1

4L2

2∑
c=1

(Wc −Bc −Hc +Mc)α2
ce

−α2
cp2

⊥/4

×
∑

n

∫ ∞

0

k⊥ dk⊥e−α2
ck2

⊥/4I0

(
αcp⊥k⊥

2

)

× ∆(kn, k⊥)√
ξ2(kn, k⊥) +∆2(kn, k⊥)

×
∫ ∫

dx1 dx2θ(x1+L)θ(L−x1)θ(x2+L)θ(L−x2)

× sin
(
kn(x1 − L)

)
sin

(
kn(x2 − L)

)
× sin

(
pm(x1−L)

)
sin

(
pm(x2−L)

)
e−(x1−x2)

2/α2
c , (7)

where I0(z) is the modified Bessel function.
Integrating then over x1 and x2 and introducing the

function

gc(p, k) =
i
√
παc

2L2(p+ k)

{
e−α2

ck2/4

[(
e2i(p+k)L + 1

)
×erf

(
ikαc

2

)
− erf

(
ikαc

2
− 2L
αc

)

−e2i(p+k)Lerf
(
ikαc

2
+

2L
αc

)]

+e−α2
cp2/4

[(
e2i(p+k)L + 1

)
erf

(
ipαc

2

)

−erf
(
ipαc

2
− 2L
αc

)
−e2i(p+k)Lerf

(
ipαc

2
+
2L
αc

)]}
, (8)

we arrive at the gap equation in the following form:

∆(pm, p⊥) = −1
2

2∑
c=1

α2
c(Wc−Bc−Hc+Mc)e−α2

cp2
⊥/4

×
∫ ∞

0

k⊥ dk⊥e−α2
ck2

⊥/4I0

(
αcp⊥k⊥

2

)

×
∑

n

∆(kn, k⊥)√
ξ2(kn, k⊥) +∆2(kn, k⊥)

Gc(pm, kn), (9)

where

Gc(p, k) =
1
8
Re

{
gc(p+ k, p+ k) + gc(p− k, p− k)

+gc(p+ k,−p− k) + gc(p− k,−p+ k)
−2gc(p+k,−p+ k)−2gc(p+ k, p− k)

}
. (10)

To investigate spatial behavior of the nonlocal pair-
ing gap operator the Wigner transform of the gap is very
useful. It reads

∆(R,k) =
∫

ds∆(R, s)eiks, (11)

where R = (r1+ r2)/2 and s = r1 − r2. In the case of slab
geometry, the Wigner transform (11) of the gap operator
depends only on X which is the component of R perpen-
dicular to the surface. Considering ∆(X, kx, k⊥) only for
X > 0, since it is an even function of X, one can easily
obtain the following series:

∆(X, kx, k⊥) =
1
πL
θ(L−X)

∞∑
n=1

∆(kn, k⊥)

×
[
2 cos

(
kn(X − L)) sin

(
2kx(X − L))
kx

− sin(2(kx−kn)(X−L))
kx−kn

− sin(2(kx+kn)(X−L))
kx+kn

]
. (12)

In the bulk, the gap ∆ depends mainly on the total
momentum k =

√
k2

x + k2
⊥. Approximately, this is true

also for the surface region. Within this approximation, we
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Fig. 1. The gap-shape function χG
F (X) calculated in the model

of pairing with the Gogny force in the slab of nuclear matter
within the hard-wall potential for εF = 42MeV (panel a) and
εF = 46MeV (panel b). The half-width L of the slab is given
(in fm) by the numbers close to the curves.

can treat the gap at the Fermi surface ∆(X, kF(X)) as
the Wigner transform ∆(X, kx, k⊥) taken at k = kF(X),
where kF =

(
3π2ρ(X)/2

)1/3 is the local Fermi momen-
tum. We define the gap-shape function as the gap at the
Fermi surface normalized to one at the center of the slab:

χG
F (X) = ∆

(
X, kF(X)

)
/∆

(
0, kF(0)

)
. (13)

The function χG
F (X) is drawn in fig. 1 (a and b) for four

different values of the half-width of the slab: L = 4, 6, 8
and 10 fm. In fig. 1a the gap-shape function is calculated
for the Fermi momentum kF = 1.4232 fm−1 corresponding
to the Fermi energy εF = 42MeV, while in calculation of
fig. 1b the value of Fermi momentum, kF = 1.4894 fm−1,
corresponds to εF = 46MeV.

Let us discuss the salient features of the shape function
χG

F (X). The main observation is that in the slab, almost
independent of its thickness, the surface enhancement is
not very different from the semi-infinite matter case pre-
viously studied [2]. The enhancement of the surface peak

is rather moderate, not exceeding 20%–30%. In fact it is
not clear how much of the surface peak comes from Friedel
oscillations and how much is a genuine enhancement of ∆.
From this result and our previous study [2] we are there-
fore inclined to conclude that at least with the Gogny force
pairing is only very moderately surface enhanced. As to
the dependence of the gap-shape function on the size of
the slab, in eq. (13) there is a competition between two
effects. First, with decrease of the size parameter L, the
peak value of the numerator ∆(X 
 L) becomes higher.
Second, the denominator (the gap value in the center) also
gets enhanced. As a result, the L-dependence of the gap-
shape function turns out to be rather smooth.

Of course, finite nuclei are rather different from a slab
but qualitatively things should be similar. Some results
for finite nuclei with the Gogny force do exist [8] in the
Sn-region but no definite conclusions about the surface
features of ∆ can be drawn from this limited number of
values. In fact, in finite nuclei like the tin isotopes, we
should look at a great number of nuclei in the isotopic
chain because the behavior of ∆(r) can fluctuate a great
deal passing through the open neutron shell in question.

A detailed study of several long isotopes chains [9] with
density-dependent effective pairing forces confirmed that,
in the framework of a phenomenological approach, it is
rather difficult to distinguish between two opposite pos-
sibilities, the volume pairing and the pairing with pro-
nounced surface enhancement. For this purpose, the anal-
ysis of some binding energy characteristics, such as sep-
aration energies, should be accompanied by the study of
the variations of nuclear radii along the chain. The odd-
even staggering phenomenon is especially sensitive to the
coordinate dependence of ∆. The microscopic calculation
of ∆ should help to solve this problem.

Of course, the conclusion may strongly depend on the
employed pairing force and below we will investigate the
surface behavior of pairing with a separable version of the
Paris force.

3 Pairing with the Paris force in a slab of
nuclear matter within a Saxon-Woods
potential

Now we shall adopt the more realistic one-dimensional
Saxon-Woods potential U(X) for a slab with the width of
2L symmetrical around the origin X = 0:

U(X)=
U0

1+exp
(
(X−L)/d)+exp

( − (X+L)/d
) . (14)

Here U0 is the potential depth in the central region and
d is the diffuseness parameter (to be more exact, the max-
imum potential depth is U(0) = U0/(1 + 2 exp(−L/d))).
The two parameters (U0 = −50MeV and d = 0.65 fm)
are taken to be close to those of real atomic nuclei. The
half-width parameter L will be changed to examine the
size dependence of the effect under consideration.

To avoid a rather cumbersome resolution of the Bo-
golyubov equations for the nonlocal gap [10], as in [1], we



20 The European Physical Journal A

use a powerful method [11] (we refer to it as KKC) of
solving the gap equation for the case of a nonlocal inter-
action. This method was originally suggested for infinite
matter where the gap ∆ can be represented as a product
∆(p) = ∆Fχ(p) of the constant∆F = ∆(pF) and the “gap-
shape” function χ(p) normalized to χ(pF) = 1. Basically
the KKC method is a transformation of the gap equation
to a set of two coupled equations: an integral equation for
χ(p), which is almost independent of the value of ∆F, and
an algebraic equation for the value ∆F. This significantly
simplifies the solution of the gap equation in infinite mat-
ter. In [1] the extension of the KKC method to nonzero
temperatures [11,12] was used in the case of semi-infinite
nuclear matter where the spatial dependence of the gap-
shape function was also taken into account. Within the
KKC method for infinite matter, the temperature and
momentum parts of the gap function can be factorized
as follows: ∆(p, T ) = ∆F(T )χ(p). In [1] it was supposed
that a similar separation of the temperature factor can be
made for the semi-infinite system:

∆
(
x1, x2, k

2
⊥;T

)
= ∆F(T )χ

(
x1, x2; k2

⊥
)
. (15)

An additional advantage from using the KKC method in
this case comes from the possibility of finding the nor-
malization factor ∆F(T ) by solving the gap equation in
infinite matter.

In this paper we use the same ansatz (15) for the slab
geometry. Unfortunately, in this case no direct relation
to infinite nuclear matter exists and there is no evident
way to find the normalization factor without solving the
Bogolyubov equations. However, since the gap-shape func-
tion is of main importance for an analysis of the surface
enhancement of the gap, we do not calculate here the
normalization factor postponing the solution of the Bo-
golyubov equation to a forthcoming publication.

As far as in the case of the slab geometry all the equa-
tions are very similar to those for semi-infinite matter, we
write down explicitly only those which are necessary for
explaining our calculations and refer the reader to [1,6]
for details. In symbolic notation, the gap equation has the
form [13,14]:

∆(T ) = Vp
effA

s
0(T )∆(T ), (16)

where Vp
eff is the effective pairing interaction acting in the

model space S0 in which the superfluid two-particle prop-
agator As

0 is defined.
The separable 3×3 form [3,4] of the Paris potential [5]

is used:
V (k,k′) =

∑
ij

λijgi(k2)gj(k′2), (17)

where k and k′ are the relative momenta before and after
scattering. The effective interaction has a similar separa-
ble form which, in notation of [6], is as follows:

Vp
eff

(
x1, x2, x3, x4, k

2
⊥, k

′2
⊥ ;E

)
=∑

ij

Λij(X,X ′;E)gi
(
k2
⊥, x

)
gj

(
k′2⊥ , x

′), (18)

where E = 2µ, X = (x1 + x2)/2, x = x1 − x2, etc., and
gi(k2

⊥, x) stands for the inverse Fourier transform in the

x-direction of the form factor gi(k2
⊥ + k2

x). The gap-shape
factor can be also written as

χ
(
x1, x2; k2

⊥
)
=

∑
i

χi(X)gi
(
k2
⊥, x

)
. (19)

After substituting eqs. (15), (17)-(19) into eq. (16) at
T = Tc, we obtain the following equation for the compo-
nents χi:

χi(X) =
∑
lm

∫ ∫
dX1 dX2Λil(X,X1;E)

×Blm(X1,X2, E;Tc)χm(X2), (20)

where

Blm(X,X ′, E;T ) =

−
∑
n1n2

∫
dk⊥
(2π)2

1−Nλ1(T )−Nλ2(T )
E − ελ1 − ελ2

×

×Gl
n1n2

(
k2
⊥,X

)
Gm

n1n2

(
k2
⊥,X

′), (21)

Gl
n1n2

(k2
⊥,X) =∫

yn1

(
X +

x

2

)
gl(k2

⊥, x)yn2

(
X − x

2

)
dx, (22)

Nλ(T ) =
(
1 + exp

(
ελ − µ
T

))−1

, (23)

In eqs. (21)-(23), λ = (n,k⊥), ελ = εn + k2
⊥/2m, εn and

yn(x) stand for the energies and wave functions, respec-
tively, of the 1-dimensional Schrödinger equation with the
potential (14).

Following the recipe of ref. [6] for the effective interac-
tion Vp

eff the propagator As
0 embodies all the single-particle

states with negative energies only. Thus, the summation
over n1, n2 and the integration over k⊥ are limited by the
conditions: ελ < 0, ελ′ < 0.

The coefficients Λij obey the set of integral equations

Λij(X12,X34;E) = λijδ(X12 −X34) +

+
∑
lm

λil

∫
dX56Blm(X12,X56;E)

×Λmj(X56,X34;E), (24)

where Blm are defined by an expression similar to eq. (21),
but without the temperature factor, including the states
λ1, λ2 from the complementary subspace.

To simplify the calculations, we used the local poten-
tial approximation (LPA) which has turned out to be ac-
curate for semi-infinite nuclear matter [6] and for nuclear
slabs [15]. The LPA prescription consists in using for the
2-particle propagator B of the complementary space the
local momentum approximation, very similar to the Local
Density Approximation (LDA) [16], for each particle sep-
arately: εn → p2x/2m + V (X), εn′ → (p′x)

2/2m + V (X).
This type of approach, where the individual particles are
treated in semiclassical approximation was used in [17]
for examining the response function. This approximation
has been shown to be very accurate, if one is not inter-
ested in fine details. It should be stressed that the LPA is
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only applied to the equation for the effective interaction
Vp

eff , while no local approximation is used in the renor-
malized gap equation (16). That is, the local approxima-
tion is used only for two-particle states belonging to the
complementary space, for which the corresponding energy
denominators in eq. (21) are large. Therefore the individ-
ual contribution of each state is negligible, and only the
sum of a number of such contributions is important. For
such a sum the semiclassical and local approximations are
expected to be accurate. In this respect LPA is different
from the standard LDA, since in the latter the local ap-
proximation is used for all two-particle states.

Within the LPA, the exact values of Blm(X1,X2;E)
are replaced by the set of Binf

lm(t, E;U [X]) calculated for
infinite nuclear matter put into the homogeneous poten-
tial well of the depth U [X]. Here t = X1−X2, X = (X1+
X2)/2 are the relative and average values of the CM coor-
dinates. In the first step of the LPA procedure we calculate
the set of vectors Binf

lm(t, E = 2µ;Ui)(Vi = δV ·(i−1)) for a
fixed value of the chemical potential µ. In the second step,
for each value of (X, t), we find BLPA

lm (X1,X2) interpolat-
ing the values of Binf

lm(t;Vi) by the values of Vi nearest to
V (X). After substitution of BLPA

lm (X1,X2) into eq. (24) we
find the LPA prescription ΛLPA

lm (X1,X2) for the effective
interaction which should be substituted into the homoge-
neous eq. (20) for the gap-shape function. If the critical
temperature Tc were known, this equation could be solved
directly. To find Tc, a more general integral equation must
be considered:

χi(X) = λ(T )
∑
lm

∫
dX1Kil(X,X1)χm(X1), (25)

which involves the eigenvalue λ(T ). Here the abbreviation
K = ΛB0 is introduced for the kernel. The critical temper-
ature can be found from the evident condition λ(Tc) = 1.

The entire calculation scheme is similar to that for
semi-infinite matter except for some details. First, in the
slab case we are dealing with the discrete spectrum εn
in eq. (21). Second, due to the obvious reflection symme-
try of the slab system in the x-direction, all the integral
equations under consideration can be readily reduced to a
form including positive X only. Just as in [1], instead of
the direct solution of eq. (25) in the coordinate space, we
use the Fourier expansion within the symmetrical interval
(−L0, L0),

χi(X) =
∑

n

χn
i fn(X), (26)

where only the even functions must be retained, fn(x) =
cos(πn(X −Xc)/L0). The kernels Kij(X,X ′) of eq. (25)
are also expanded in a double Fourier series. Finally, we
arrive at a set of homogeneous linear equations for the
coefficients χn

i :

χn
i =

3∑
j=1

N∑
n′=1

Knn′
ij χn′

j , (27)

which can be solved by standard numerical methods. Then
the components of the gap-shape function are found from
eq. (26).
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Fig. 2. The gap-shape function χP
F(X) calculated in the model

of pairing with the Paris force in the slab of nuclear matter
within the Saxon-Woods potential for µ = −8MeV (panel a)
and µ = −4MeV (panel b). The half-width parameter L is
given in the same way as in fig. 1.

Instead of analyzing the separate components χi(X)
for the separable form (17) of Paris force it is more useful
to display the local form of the gap-shape function which
enters the matrix elements of the gap for states nearby
the Fermi surface:

χP
F(X) =

∑
i

χi(X)gi
(
k2 = k2

F(X)
)
, (28)

where kF(X) =
√
2m(µ− U(X)) is the local Fermi mo-

mentum (kF(X) = 0 for µ − U(X) < 0). We calculated
the gap-shape function χP

F(X) for the same values of the
half-width of the slab, L = 4, 6, 8 and 10 fm, as in the case
of the hard-wall potential and for two values of the chem-
ical potential µ = −8MeV and −4MeV. As the depth
of the Saxon-Woods potential was taken U0 = −50MeV,
these two values of µ correspond just to the same values
of the Fermi energy as in the hard-wall case. The results
are shown in fig. 2a and b.
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One observes a surface bump which is much more
pronounced than in the previous model with the Gogny
force and the hard-wall potential. The enhancement is now
around 80%–100% and, as for the Gogny force, it is quite
similar to the semi-infinite matter case [1]. Two values of
the chemical potential µ = −8MeV and µ = −4MeV have
been chosen which in account of the depth of the Saxon-
Woods potential of V0 = −50MeV correspond precisely to
the Fermi energies εF = 42MeV and εF = 46MeV, respec-
tively, of the previous model. Going from µ = −8MeV to
µ = −4MeV, a rather important increase of the enhance-
ment of the order of 30% is observed which is much larger
than in the case of the hard-wall potential with the Gogny
force. On the other hand, there is little variation with the
thickness of the slab, the maximum of ∆ being a couple
of percent larger for small slab size. This situation is anal-
ogous to the previous model.

The surface effect in ∆ for the Paris force can be qual-
itatively explained from the properties of the effective in-
teraction Vp

eff which were analyzed in [18]. There it was
found that Vp

eff undergoes a sharp variation in the surface
region, from almost zero in the bulk to very strong at-
traction in vacuum. In the asymptotic region, the latter
coincides with the off-shell T -matrix of freeNN -scattering
T (E = 2µ) which exhibits a resonant behavior at small E.
The strong surface attraction and the sharp variation in
the surface region are mostly responsible for the surface
effect of the gap. The µ-dependence of the surface effect
can be explained by the increase of the jump δVp

eff from in-
side to outside as |µ| is decreasing. There are two reasons
for such an increase. The first one is the k2-dependence of
the form factors in eqs. (17), (18) leading to a reduction
of Vp

eff in the inner region with increasing values of kF.
The second one is a pole-like behavior of T (E) at small E
which results in an increase of Vp

eff with decreasing |µ| in
the exterior, due to the approach to the virtual pole. One
sees that both effects work in the same direction resulting
in strengthening the surface effect at small values of |µ|.

It is worthy to mention that the gap equation with the
realistic Argonne v14 potential was solved in ref. [19] for a
system consistent of the nucleus 124Sn imbedded into the
low-density neutron matter. It was interesting to analyze
the coordinate form of the gap function obtained in this
calculation.

4 Discussion, and conclusions

In this work we continued our effort to understand the sur-
face behavior of the nuclear gap. Previous investigations
considered semi-infinite nuclear matter embedded in i) a
hard-wall potential with the Gogny force [2] and ii) a po-
tential of Saxon-Woods shape with the separable version
of the Paris force [1]. In both cases a surface enhance-
ment was found but which is relatively modest in view of
what one could expect from LDA. In the present study
we addressed the question whether finite-size effects can
strongly alter this situation and repeated the former cal-
culation [1,2] in a slab configuration.

In the first case of pairing with the Gogny force (D1)
within the slab of nuclear matter, the hard-wall potential
allows to perform most part of the calculations analyti-
cally. The second rather sophisticated case demanded a
lot of numerical effort due to the use of the Paris inter-
action and the Saxon-Woods shape of the mean-field po-
tential. In both cases a noticeable surface effect for the
pairing gap was obtained of the same order of magnitude
as was previously found in semi-infinite nuclear matter.
The shape of the gap in coordinate space turned out to
be qualitatively similar in both cases, with a significant
surface enhancement. For the value of the chemical po-
tential µ = −8MeV which simulates stable atomic nuclei,
the enhancement is of the order of 30% for the first model
and is almost 100% for the second one. A general feature
of both models is the rather smooth dependence of the en-
hancement on the slab thickness which is approximately
10% in the first case and only 5% in the second one. In
both cases, a µ-dependence of the surface effect is found:
the enhancement coefficient increases as the absolute value
of the chemical potential |µ| decreases. The latter effect
is more pronounced for the Paris interaction and Saxon-
Woods potential reaching 30% with diminishing |µ| from
8MeV to 4MeV. For the Gogny force and box potential,
the corresponding µ-effect is approximately 10%.

To understand in detail the possible common physical
origin of this surface enhancement as well as the men-
tioned differences, it is instructive to consider the gap
equation in the form (16) in which ∆ is expressed in terms
of the effective interaction Vp

eff given by eq. (18). Prop-
erties of the effective interaction generated by the Paris
force were analyzed in [18], where it was found to undergo
a sharp variation in the surface region. It is this sharp
variation that is mostly responsible for the surface effect
in the gap. It is natural that in the case of the hard-wall
box potential the influence of the surface interaction is
smaller which makes the surface enhancement weaker.

The µ-dependence of the surface effect is explained by
the increase of the jump δVp

eff = V in
eff − Vex

eff with decreas-
ing |µ|. This increase is caused by two reasons. The first
one is the strong k2-dependence of the form factors in
eq. (17) leading to a reduction of V in

eff for the larger val-
ues of kF in the bulk. The second one is an increase of
Vex

eff with decreasing |µ| caused by the pole-like behavior
of the T -matrix at small E. Thus, both reasons jointly
work towards making the surface effect stronger at small
values of |µ|. Qualitatively, the two reasons should work
also for Gogny force, but the hard-wall potential strongly
suppresses the second reason, diminishing the surface ef-
fect itself and its µ-dependence as well. Finally, it should
be mentioned that a large value of the coherence length
of pairing which is comparable with the size of the slab
makes all the effects under considerations rather smooth.
In particular, it results in the weak dependence of the sur-
face enhancement of the pairing gap on the slab thickness.

It is worthy to point out that the mechanism of the
surface enhancement in ∆ considered in this paper is
different from the one suggested in ref. [20] and devel-
oped in detail for a slab model in ref. [21]. The latter is
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related to a contribution to the effective pairing interac-
tion of the virtual exchange by collective surface vibra-
tions. The induced effective pairing interaction also results
in a pronounced surface effect in the gap function [21]. In a
consistent description of the surface behavior of the pair-
ing gap in nuclei these two effects should be considered on
equal footing.

This research was partially supported by Grants No. 00-15-
96590 and No. 00-02-17319 from the Russian Foundation for
Basic Research. Two of the authors (E.E.S. and M.V.Z.) thank
INFN (Sezione di Catania and LNS) and Catania University
for hospitality during their stay in Catania.

References

1. M. Baldo, U. Lombardo, E.E. Saperstein, M.V. Zverev,
Phys. Lett. B 459, 437 (1999).

2. M. Farine, P. Schuck, Phys. Lett. B 459, 444 (1999).
3. J. Haidenbauer, W. Plessas, Phys. Rev. C 30, 1822 (1984).
4. J. Haidenbauer, W. Plessas, Phys. Rev. C 32, 1424 (1985).
5. M. Lacombe, B. Loiseaux, J.M. Richard, R. Vinh Mau,
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